综合智慧能源 ›› 2024, Vol. 46 ›› Issue (10): 1-11.doi: 10.3969/j.issn.2097-0706.2024.10.001

• 新能源电力系统优化 •    下一篇

基于全生命周期评价的风光制氢综合系统容量配置优化研究

白章1(), 郝文杰1, 李琦1, 郝洪亮2, 温彩凤3, 郭苏4, 黄贤坤1   

  1. 1.中国石油大学(华东) 新能源学院,山东 青岛 266580
    2.北京大学 鄂尔多斯能源研究院,内蒙古 鄂尔多斯 017010
    3.内蒙古工业大学 能源与动力工程学院,呼和浩特 010051
    4.河海大学 新能源学院,江苏 常州 213200
  • 收稿日期:2024-04-08 修回日期:2024-07-05 接受日期:2024-10-25 出版日期:2024-10-25
  • 作者简介:白章(1987),男,副教授,博士生导师,从事太阳能热化学和多能互补分布式能源系统等方面的研究,baizhang@upc.edu.cn
  • 基金资助:
    山东省自然科学基金项目(ZR2022YQ58);内蒙古自治区自然科学基金项目(2023JQ04)

Capacity configuration optimization of wind‒solar hydrogen production based on life cycle assessment

BAI Zhang1(), HAO Wenjie1, LI Qi1, HAO hongliang2, WEN Caifeng3, GUO Su4, HUANG Xiankun1   

  1. 1. College of New Energy, China University of Petroleum (East China),Qingdao 266580,China
    2. Ordos Institute of Energy Research,Peking University,Ordos 017010,China
    3. School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
    4. College of New Energy, Hohai University, Changzhou 213200, China
  • Received:2024-04-08 Revised:2024-07-05 Accepted:2024-10-25 Published:2024-10-25
  • Supported by:
    Shandong Provincial Natural Science Foundation(ZR2022YQ58);Natural Science Foundation of Inner Mongolia Autonomous Region of China(2023JQ04)

摘要:

风光互补发电制氢是促进风光资源就地消纳、减少弃风弃光的重要技术途径。然而风光出力的波动性与系统设备复杂性也对风光制氢系统的容量优化配置决策提出了挑战。为此基于全生命周期评价方法,将平准化制氢成本、单位氢气碳排放强度与系统能量损失率作为优化目标,结合改进的NSGA-Ⅲ多目标优化算法,构建了年产2万t氢气的离网型风光制氢系统容量配置优化模型,并进一步分析了系统碳排放与经济性收益。研究结果表明,结合内蒙古某地区风光资源特征,经优化后系统平准化制氢成本为25.88 元/kg,单位制氢碳排放量为0.59 kg/kg,同时全年风光利用率提升至91.09%,风光制氢系统的资源得到了高效利用。同时,结合全生命周期碳排放分析计算,系统碳排放总量为25.03万t,与典型煤制氢技术相比,单位制氢的碳减排量降低了97.05%。研究成果将为开展风光制氢综合利用提供了有益参考。

关键词: 可再生能制氢, 风光制氢综合系统, 容量配置, 多目标优化, 全生命周期, 经济性分析, 碳排放

Abstract:

A wind-solar-hydrogen production complementary system is an important technical method to promote the local renewable energy utilization and reduce wind and solar power curtailment. However, the fluctuation of wind and solar outputs and the variety of system equipment challenge the capacity allocation optimization of wind‒solar‒hydrogen production complementary systems. A life cycle assessment(LCA)method was used to address this problem. Taking the levelized cost of hydrogen(LCOH),carbon emission intensity per unit of hydrogen, and energy loss rate as optimization objectives, an off-grid wind‒solar‒hydrogen production system with an annual production capacity of 20 000 t of hydrogen was constructed based on the improved NSGA-Ⅲ multi-objective optimization algorithm. The carbon emissions and economic benefits of the system were further analyzed. The results showed that after the optimization based on the wind and solar resource characteristics in Inner Mongolia, the LCOH of the system was 25.88 yuan/kg, with a carbon emission intensity of 0.59 kg/kg. The annual renewable energy utilization rate increased to 91.09%, demonstrating efficient resource utilization. The LCA showed that the system's total carbon emissions amounted to 250 300 t, and the carbon emission per unit of hydrogen was reduced by 97.05% compared to that of a typical coal-based hydrogen production system. The research results provide a reasonable reference for the utilization of wind-solar-hydrogen production complementary systems.

Key words: hydrogen production based on renewable energy, wind-solar-hydrogen production complementary system, capacity configuration, multi-objective optimization, life cycle assessment, economic analysis, carbon emission

中图分类号: